Normalized concentrating solutions to nonlinear elliptic problems

نویسندگان

چکیده

We prove the existence of solutions ( λ , v ) ∈ R × H 1 Ω elliptic problem { − Δ + V x = p in Ω, > 0 ∫ 2 d ρ . Any solving such (for some is called a normalized solution, where normalization settled L Here either whole space N or bounded smooth domain which case we assume ≡ and homogeneous Dirichlet Neumann boundary conditions. Moreover, < if ≥ 3 Normalized appear different contexts, as study Nonlinear Schrödinger equation, that quadratic ergodic Mean Field Games systems. concentrating at suitable points prescribed mass small (when 4 large it approaches critical threshold ).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Regularity of Weak Solutions to Nonlinear Elliptic Obstacle Problems

for all v∈ ={v∈W 0 (Ω), v≥ψ a.e. in Ω}. Here Ω is a bounded domain in RN (N≥2) with Lipschitz boundary, 2≤ p ≤N . A(x,ξ) :Ω×RN → RN satisfies the following conditions: (i) A is a vector valued function, the mapping x → A(x,ξ) is measurable for all ξ ∈ RN , ξ → A(x,ξ) is continuous for a.e. x ∈Ω; (ii) the homogeneity condition: A(x, tξ)= t|t|p−2A(x,ξ), t ∈ R, t = 0; (iii) the monotone inequality...

متن کامل

Asymptotic Expansion of Solutions to Nonlinear Elliptic Eigenvalue Problems

We consider the nonlinear eigenvalue problem −∆u+ g(u) = λ sinu in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 2) is an appropriately smooth bounded domain and λ > 0 is a parameter. It is known that if λ 1, then the corresponding solution uλ is almost flat and almost equal to π inside Ω. We establish an asymptotic expansion of uλ(x) (x ∈ Ω) when λ 1, which is explicitly represented by g.

متن کامل

Multiple Solutions for Strongly Resonant Nonlinear Elliptic Problems with Discontinuities

We examine a nonlinear strongly resonant elliptic problem driven by the p-Laplacian and with a discontinuous nonlinearity. We assume that the discontinuity points are countable and at them the nonlinearity has an upward jump discontinuity. We show that the problem has at least two nontrivial solutions without using a multivalued interpretation of the problem as it is often the case in the liter...

متن کامل

Multiple Solutions for Nonlinear Discontinuous Strongly Resonant Elliptic Problems

We consider quasilinear strongly resonant problems with discontinuous right-hand side. To develop an existence theory we pass to a multivalued problem by, roughly speaking, filling in the gaps at the discontinuity points. We prove the existence of at least three nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally Lipschitz functionals due to Chang (1981) and ...

متن کامل

Entropy Solutions for Nonlinear Degenerate Elliptic-parabolic-hyperbolic Problems

We consider the nonlinear degenerate elliptic-parabolic-hyperbolic equation ∂tg(u)−∆b(u)− div Φ(u) = f(g(u)) in (0, T )× Ω, where g and b are nondecreasing continuous functions, Φ is vectorial and continuous, and f is Lipschitz continuous. We prove the existence, comparison and uniqueness of entropy solutions for the associated initial-boundary-value problem where Ω is a bounded domain in RN . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2020.11.003